
Static Code Analysis

If you don’t compromise on ,
why compromise on

code security
code quality?

Lear how DerScanner brings code quality and security vulnerability detection  
into one unified platform.

100

?

2Static Code Analysis

At DerScanner, we believe quality code is the foundation of secure, maintainable, and reliable

applications. That’s why we’re excited to announce a major update to DerScanner, bringing you a robust

set of almost designed to enhance your code quality across DELPHI/PASCAL and

JavaScript/TypeScript.

100 new rules

With these updates, we’re offering a smarter, more efficient way to write cleaner code that’s easier to

maintain while avoiding common pitfalls. After all, if you don’t compromise on security, why

compromise on code quality?

3Static Code Analysis

Key Features

Here’s how the new enhancements directly empower developers and coding enthusiasts to write better

code across supported languages:

NEW
JavaScript/TypeScript/TSX Best Practices

 Better Readability with Modern Standards: Switch to `[]` literals instead of the `Array`

constructor for cleaner, modern coding practices and error prevention

 Structured Arrow Functions: Add brackets around arrow function parameters to simplify the

reading and modification of complex expressions

 Google-Recommended Practices: Replace `apply` with the spread syntax for concise, intuitive

parameter handling

 CamelCase Naming Style: Follow industry naming conventions for variables and functions to

improve clarity and maintainability

 Consistent Formatting & Logic Clarity: Unified curly brace formatting and block structuring to aid

readability and reduce logical errors

 And more!

Delphi/Pascal Best Practices
 Streamlined Naming Conventions:

 Enhanced Error Handling:

Names of user-defined types now start with `T` for clear identification.

Exceptions begin with `E`, pointer types with `P`, and interface names with `I`, ensuring

seamless recognition in complex codebases.

Opt for `TryStrToInt` and `TryStrToFloat` instead of older methods for better error

management in string-to-number conversions.

4Static Code Analysis

Universal Best Practices

 Simplified Visibility & Order:

Maintain standard ordering for visibility sections (private, protected, public, published) to

optimize maintainability.

Class fields are now strictly reserved for the private section, ensuring encapsulation and

minimizing errors.

 Avoid Confusing Practices:

 Avoid Duplicated Code:

 Modern Constructor & Destructor Naming:

 Perceptual Complexity Minimization:

 Error-Free Line Breaks:

 Consistent Documentation:

 And more!

 And more!

Stay away from identifiers that mix similar characters (`O`/`0`, `l`/`1`) and ensure variable

names don’t mirror system directives for easier debugging.

Streamline workflows and prevent errors with the DRY (Don’t Repeat Yourself) principle,

enforced across all supported languages.

Use `Create` for constructors and `Destroy` for destructors to ensure instant recognition of

class behaviors.

Reduce nesting and convoluted branching to make your code easier for teams to review and

maintain.

Avoid invalid characters like LSEP (Line Separator) and standardize line formatting across

projects for seamless compilation.

Clear, uniform comment formatting ensures your team can instantly interpret code annotations.

By following these new recommendations, you’ll spend less time debugging and more time building

solutions that matter.

5Static Code Analysis

Why This Matters to Developers

Technical debt creeps up fast when code isn't up to scratch. These new rules are designed to keep your

projects future-proof while enhancing teamwork and readability. Imagine reduced errors, faster

onboarding for new developers, and easier debugging—all while maintaining super-clean syntax.

Key Benefits

Here’s how these standards help you:

Go Beyond Standalone Tools

 Avoid confusion in collaborative environments with clear, consistent coding conventions.

 Protect your applications by reducing logic errors, deprecated practices, and memory leaks.

 Save time and effort with structured formatting, meaning updates or changes can be applied

more quickly across the codebase.

 Create a seamless onboarding experience for teams unfamiliar with older or ambiguous code

standards.

You might have relied on third-party static code quality analysis tools in the past. Now, DerScanner

brings code quality and security vulnerability detection into one unified platform. Say goodbye to

managing separate tools and hello to an all-in-one solution that doesn’t just identify issues but also

offers actionable insights.

6Static Code Analysis

Start Writing Better Code Today

While this update focuses on Delphi/Pascal and JavaScript/TypeScript in beta, we’re working on

expanding our support to more languages soon. Stay tuned for more updates!

It’s time to take your code quality to the next level—and DerScanner is here to help. Don’t compromise

on your standards. Durability, maintainability, and readability are just one scan away.

DerSecur, established in 2011, is at the forefront of
application security. Its team of 70 experts has
developed DerScanner, a versatile application
security solution that supports 43 programming
languages and provides static, dynamic and software
composition analysis. DerSecur is committed to
furthering cybersecurity research and development,
ensuring a more secure digital future.

© 2025 DerSecur

About DerSecur https://derscanner.com/

https://derscanner.com/
https://www.youtube.com/@derscanner?app=desktop
https://www.linkedin.com/company/dersecur/

